YOU ARE HERE: Home > News & Press > News and Press > News 2012 > Asteroid belts of just the right size are friendly to life

I want information on:

Information for:

NEWS & PRESS

Asteroid belts of just the right size are friendly to life

Last Updated on Thursday, 01 November 2012 13:04
Published on Thursday, 01 November 2012 17:00

Solar systems with life-bearing planets may be rare if they are dependent on the presence of asteroid belts of just the right mass, according to two US astronomers. Rebecca Martin, a NASA Sagan Fellow from the University of Colorado and astronomer Mario Livio of the Space Telescope Science Institute in Baltimore present the new research in a paper in Monthly Notices of the Royal Astronomical Society: Letters.

asteroid belt smallThis illustration shows three possible scenarios for the evolution of asteroid belts. In the top panel, a Jupiter-size planet migrates through the asteroid belt, scattering material and inhibiting the formation of life on planets. The second scenario shows our solar-system model: a Jupiter-size planet that moves slightly inward but is just outside the asteroid belt. In the third illustration, a large planet does not migrate at all, creating a massive asteroid belt. Material from the hefty asteroid belt would bombard planets, possibly preventing life from evolving. Illustration Credit: NASA, ESA, and A. Feild (STScI). Science Credit: NASA, ESA, R. Martin and M. Livio (STScI). Click for a larger image.They suggest that the size and location of an asteroid belt, shaped by the evolution of the Sun's protoplanetary disk and by the gravitational influence of a nearby giant Jupiter-like planet, may determine whether complex life will evolve on an Earth-like planet.

This might sound surprising because asteroids are considered a nuisance due to their potential to impact the Earth and trigger mass extinctions. But an emerging view proposes that asteroid collisions with planets may provide a boost to the birth and evolution of complex life.

Asteroids may have delivered water and organic compounds to the early Earth. According to the theory of punctuated equilibrium, occasional asteroid impacts might accelerate the rate of biological evolution by disrupting a planet's environment to the point where species must try new adaptation strategies.

The astronomers based their conclusion on an analysis of theoretical models and archival observations of extrasolar Jupiter-sized planets and debris disks around young stars. "Our study shows that only a tiny fraction of planetary systems observed to date seem to have giant planets in the right location to produce an asteroid belt of the appropriate size, offering the potential for life on a nearby rocky planet," said Martin, the study's lead author. "Our study suggests that our solar system may be rather special."

Martin and Livio suggest that the location of an asteroid belt relative to a Jupiter-like planet is not an accident. The asteroid belt in our solar system, located between Mars and Jupiter, is a region of millions of space rocks that sits near the "snow line," which marks the border of a cold region where volatile material such as water ice are far enough from the Sun to remain intact. At the time when the giant planets in our solar system were forming, the region just beyond the snow line contained a dense mix of ices, rock, and metals that provided enough material to build giant planets like Jupiter.

When Jupiter formed just beyond the snow line, its powerful gravity prevented nearby material inside its orbit from coalescing and building planets. Instead, Jupiter's influence caused the material to collide and break apart. These fragmented rocks settled into an asteroid belt around the Sun.

"To have such ideal conditions you need a giant planet like Jupiter that is just outside the asteroid belt [and] that migrated a little bit, but not through the belt," Livio explained. "If a large planet like Jupiter migrates through the belt, it would scatter the material. If, on the other hand, a large planet did not migrate at all, that, too, is not good because the asteroid belt would be too massive. There would be so much bombardment from asteroids that life may never evolve."

In fact, during the solar system's infancy, the asteroid belt probably had enough material to make another Earth, but Jupiter's presence and its small migration towards the Sun caused some of the material to scatter. Today, the asteroid belt contains less than one per cent of its original mass. Using our solar system as a model, Martin and Livio proposed that asteroid belts in other solar systems would always be located approximately at the snow line. To test their proposal, Martin and Livio created models of protoplanetary disks around young stars and calculated the location of the snow line in those disks based on the mass of the central star.

They then looked at all the existing space-based infrared observations from NASA's Spitzer Space Telescope of 90 stars having warm dust, which could indicate the presence of an asteroid belt-like structure. The temperature of the warm dust was consistent with that of the snow line. "The warm dust falls right onto our calculated snow lines, so the observations are consistent with our predictions," Martin said.

The duo then studied observations of the 520 giant planets found outside our solar system. Only 19 of them reside outside the snow line, suggesting that most of the giant planets that may have formed outside the snowline have migrated too far inward to preserve the kind of slightly-dispersed asteroid belt needed to foster enhanced evolution of life on an Earth-like planet near the belt. Apparently, less than four per cent of the observed systems may actually harbour such a compact asteroid belt.

"Based on our scenario, we should concentrate our efforts to look for complex life in systems that have a giant planet outside of the snow line," Livio said.

 

 


 

Science contacts

Rebecca Martin
University of Colorado, Boulder, Colorado, USA
This email address is being protected from spambots. You need JavaScript enabled to view it.

Mario Livio
Space Telescope Science Institute, Baltimore, Maryland, USA
Tel: +1 410-338-4439
This email address is being protected from spambots. You need JavaScript enabled to view it.

 

 


 

Media contacts

Donna Weaver / Ray Villard
Space Telescope Science Institute, Baltimore, Maryland, USA
Tel: +1 410-338-4493 / +1 410-338-4514
This email address is being protected from spambots. You need JavaScript enabled to view it. / This email address is being protected from spambots. You need JavaScript enabled to view it.

Robert Massey
Royal Astronomical Society, UK
Tel: +44 (0)20 7734 3307 x214
Mob: +44 (0)794 124 8035
This email address is being protected from spambots. You need JavaScript enabled to view it.

 

 


 

Further information

The new work will appear today in: "On the formation and evolution of asteroid belts and their potential significance for life, Rebecca G. Martin and Mario Livio", Monthly Notices of the Royal Astronomical Society: Letters (published by Oxford University Press).The paper can be seen at http://mnrasl.oxfordjournals.org/content/early/2012/10/27/mnrasl.sls003.full

For illustrations and more information about this study, visit:

http://hubblesite.org/news/2012/44
http://www.nasa.gov/hubble

 

 


Notes for editors

 

The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. NASA's Goddard Space Flight Center in Greenbelt, Maryland, USA, manages the telescope. The Space Telescope Science Institute (STScI) in Baltimore, Maryland, conducts Hubble science operations. STScI is operated by the Association of Universities for Research in Astronomy, Inc., in Washington, D.C., USA.

The Royal Astronomical Society (RAS, www.ras.org.uk), founded in 1820, encourages and promotes the study of astronomy, solar-system science, geophysics and closely related branches of science. The RAS organizes scientific meetings, publishes international research and review journals, recognizes outstanding achievements by the award of medals and prizes, maintains an extensive library, supports education through grants and outreach activities and represents UK astronomy nationally and internationally. Its more than 3500 members (Fellows), a third based overseas, include scientific researchers in universities, observatories and laboratories as well as historians of astronomy and others.

Follow the RAS on Twitter via @royalastrosoc