YOU ARE HERE: Home > News & Press > News 2013 > Did Andromeda crash into the Milky Way 10 billion years ago?

I want information on:

Information for:

NEWS & PRESS

Did Andromeda crash into the Milky Way 10 billion years ago?

Last Updated on Thursday, 04 July 2013 11:14
Published on Wednesday, 03 July 2013 23:01

For many years scientists have believed that our Galaxy, the Milky Way, is set to crash into its larger neighbour, the Andromeda Galaxy, in about 3 billion years’ time and that this will be the first time such a collision has taken place. But now a European team of astronomers led by Hongsheng Zhao of the University of St Andrews propose a very different idea; that the two star systems collided once before, some 10 billion years ago and that our understanding of gravity is fundamentally wrong. Remarkably, this would neatly explain the observed structure of the two galaxies and their satellites, something that has been difficult to account for until now.  Dr Zhao will present the new work at the RAS National Astronomy Meeting in St Andrews on Thursday 4 July.

zhao m31 photo smallAn image of the Andromeda Galaxy (from top left to bottom right across the centre), made using a filter that selects the light of the hydrogen alpha spectral line. Credit: Adam Evans. Click for a larger imageThe Milky Way, made up of about 200 billion stars, is part of a group of galaxies called the Local Group. Astrophysicists often theorise that most of the mass of the Local Group is invisible, made of so-called dark matter. Most cosmologists believe that across the whole universe, this matter outweighs ‘normal’ matter by a factor of five. The dark matter in both Andromeda and the Milky Way then makes the gravitational pull between the two galaxies strong enough to overcome the expansion of the cosmos, so that they are now moving towards each other at around 100 km per second, heading for a collision 3 billion years in the future.

But this model is based on the conventional model of gravity devised by Newton and modified by Einstein a century ago, and it struggles to explain some properties of the galaxies we see around us. Dr Zhao and his team argue that at present the only way to successfully predict the total gravitational pull of any galaxy or small galaxy group, before measuring the motion of stars and gas in it, is to make use of a model first proposed by Prof. Mordehai Milgrom of the Weizmann Institute in Israel in 1983.

This modified gravity theory (Modified Newtonian Dynamics or MOND) describes how gravity behaves differently on the largest scales, diverging from the predictions made by Newton and Einstein.

Dr Zhao (University of St Andrews) and his colleagues have for the first time used this theory to calculate the motion of Local Group galaxies. Their work suggests that the Milky Way and Andromeda galaxies had a close encounter about 10 billion years ago. If gravity conforms to the conventional model on the largest scales then taking into account the supposed additional pull of dark matter, the two galaxies would have merged.

"Dark matter would work like honey: in a close encounter, the Milky Way and Andromeda would get stuck together, figuratively speaking", says team member Prof. Pavel Kroupa from Bonn University. "But if Milgrom’s theory is right", says his colleague Dr Benoit Famaey (Observatoire Astronomique de Strasbourg), "then there are no dark particles and the two large galaxies could have simply passed each other thereby drawing matter from each other into long thin tidal arms."

zhao m31 diagram smallA schematic diagram showing how the Andromeda Galaxy (at bottom right) collided with the Milky Way (at the intersection of the axes) 10 billion years ago, moved out to a maximum distance of more than 3 million light years and is now approaching our Galaxy once again. The yellow line shows the track of Andromeda with respect to the Milky Way. Credit: Fabian Lueghausen / University of Bonn. Click for a larger imageNew little galaxies would then form in these arms, "a process often observed in the present-day universe", adds team member Fabian Lueghausen, also from Bonn.   Dr Zhao explains: “The only way to explain how the two galaxies could come close to each other without merging is if dark matter isn’t there. Observational evidence for a past close encounter would then strongly support the Milgromian theory of gravity.”

Just such a signature might already have been found. Astronomers struggle to account for the distribution of dwarf galaxies in orbit around both the Milky Way and Andromeda. The dwarf galaxies could be explained if they were born from gas and stars ripped out of the two parent galaxies during their close encounter.

Pavel Kroupa sees this as the ‘smoking gun’ for the collision. “Given the arrangement and motion of the dwarf galaxies, I can’t see how any other explanation works”, he comments.

The team now plan to model the encounter using Milgromian dynamics and are developing a computer code at Bonn University for this purpose.

In the new model, the Milky Way and Andromeda are still going to crash into each other again in the next few billion years, but it will feel like 'deja vu'. And the team believes that their discovery has profound consequences for our current understanding of the Universe. Pavel Kroupa concludes, “If we are right, the history of the cosmos will have to be rewritten from scratch.”

 


Publications

A preprint of the the paper, entitled "Local Group timing in Milgromian dynamics. A past Milky Way-Andromeda encounter at z>0.8", is available from http://arxiv.org/abs/1306.6628

 


Science contacts

Dr Hongsheng Zhao
University of St Andrews
This email address is being protected from spambots. You need JavaScript enabled to view it.

Dr Benoit Famaey
Observatoire Astronomique de Strasbourg
France
This email address is being protected from spambots. You need JavaScript enabled to view it.

Prof. Dr Pavel Kroupa
Argelander Institute for Astronomy (AIfA)
University of Bonn
Germany
Tel: +49 228 73 6140 (Secretary: -3655)
This email address is being protected from spambots. You need JavaScript enabled to view it.

Mr Fabian Lueghausen
University of Bonn
This email address is being protected from spambots. You need JavaScript enabled to view it.

Media contacts

Dr Robert Massey
Royal Astronomical Society
Mob: +44 (0)794 124 8035
This email address is being protected from spambots. You need JavaScript enabled to view it.

Ms Anita Heward
Royal Astronomical Society
Mob: +44 (0)7756 034 243
This email address is being protected from spambots. You need JavaScript enabled to view it.

Ms Emma Shea

Head of Development Communications
University of St Andrews
Tel: +44 (0)1334 462 167
Mob: +44 (0)785 090 0352
This email address is being protected from spambots. You need JavaScript enabled to view it.

Landline numbers in NAM 2013 press room (available from 9 a.m. to 5 p.m. from 1-4 July, 9 a.m. to 3 p.m. 5 July):

Tel: +44 (0)1334 462231, +44 (0)1334 46 2232

 

 


 

Images and captions

 

https://www.ras.org.uk/images/stories/NAM2013/4July/zhao%20m31%20diagram.jpg

A schematic diagram showing how the Andromeda Galaxy (at bottom right) collided with the Milky Way (at the intersection of the axes) 10 billion years ago, moved out to a maximum distance of more than 3 million light years and is now approaching our Galaxy once again. The yellow line shows the track of Andromeda with respect to the Milky Way. Credit: Fabian Lueghausen / University of Bonn

 

https://www.ras.org.uk/images/stories/NAM2013/4July/zhao%20m31%20photo.jpg

An image of the Andromeda Galaxy (from top left to bottom right across the centre), made using a filter that selects the light of the hydrogen alpha spectral line. Credit: Adam Evans

 

 


 

Notes for editors

 

Bringing together more than 600 astronomers and space scientists, the RAS National Astronomy Meeting (NAM 2013) will take place from 1-5 July 2013 at the University of St Andrews, Scotland. The conference is held in conjunction with the UK Solar Physics (UKSP: www.uksolphys.org) and Magnetosphere Ionosphere Solar Terrestrial (MIST: www.mist.ac.uk) meetings. NAM 2013 is principally sponsored by the RAS, STFC and the University of St Andrews and will form part of the ongoing programme to celebrate the University’s 600th anniversary.

Meeting arrangements and a full and up to date schedule of the scientific programme can be found on the official website at http://www.nam2013.co.uk

The Royal Astronomical Society (RAS: www.ras.org.uk, Twitter: @royalastrosoc), founded in 1820, encourages and promotes the study of astronomy, solar-system science, geophysics and closely related branches of science. The RAS organises scientific meetings, publishes international research and review journals, recognizes outstanding achievements by the award of medals and prizes, maintains an extensive library, supports education through grants and outreach activities and represents UK astronomy nationally and internationally. Its more than 3500 members (Fellows), a third based overseas, include scientific researchers in universities, observatories and laboratories as well as historians of astronomy and others.

The Science and Technology Facilities Council (STFC: www.stfc.ac.uk, Twitter: @stfc_matters) is keeping the UK at the forefront of international science and tackling some of the most significant challenges facing society such as meeting our future energy needs, monitoring and understanding climate change, and global security. The Council has a broad science portfolio and works with the academic and industrial communities to share its expertise in materials science, space and ground-based astronomy technologies, laser science, microelectronics, wafer scale manufacturing, particle and nuclear physics, alternative energy production, radio communications and radar. It enables UK researchers to access leading international science facilities for example in the area of astronomy, the European Southern Observatory.

Founded in the 15th century, St Andrews is Scotland’s first university and the third oldest in the English speaking world. Teaching began in the community of St Andrews in 1410 and the University was formally constituted by the issue of Papal Bull in 1413. The University is now one of Europe’s most research intensive seats of learning – over a quarter of its turnover comes from research grants and contracts. It is one of the top rated universities in Europe for research, teaching quality and student satisfaction and is consistently ranked among the UK’s top five in leading independent league tables produced by The Times, The Guardian and the Sunday Times.