YOU ARE HERE: Home > News & Press > Small, but plentiful: how the faintest galaxies illuminated the early universe

I want information on:

Information for:

NEWS & PRESS

Small, but plentiful: how the faintest galaxies illuminated the early universe

Last Updated on Monday, 07 July 2014 09:31
Published on Monday, 07 July 2014 00:01

Astronomers investigating behaviour of the universe shortly after the Big Bang have made a surprising discovery: the properties of the early universe are determined by the smallest galaxies. The team report their findings in a paper published today in the journal Monthly Notices of the Royal Astronomical Society.

wise PR smallA view of the entire simulation volume showing the large scale structure of the gas, which is distributed in filaments and clumps. The red regions are heated by UV light coming from the galaxies, highlighted in white. These galaxies are over 1000 times less massive than the Milky Way and contributed nearly one-third of the UV light during re-ionisation. The field of view of this image is 400,000 light years across, when the universe was only 700 million years old. Credit: John Wise. Click for a larger version.Shortly after the Big Bang, the universe was ionised: ordinary matter consisted of hydrogen with its positively charged protons stripped of their negatively charged electrons. Eventually, the universe cooled enough for electrons and protons to combine and form neutral hydrogen. This cool gas will eventually form the first stars in the universe but for millions of years, there are no stars. Astronomers therefore aren't able to see how the cosmos evolved during these 'dark ages' using conventional telescopes. The light returned when newly forming stars and galaxies re-ionised the universe during the 'epoch of re-ionisation'.

Astronomers agree that the universe became fully re-ionised roughly one billion years after the Big Bang. About 200 million years after the birth of the cosmos, ultraviolet (UV) radiation from stars began to split neutral hydrogen into electrons and protons. It took another 800 million years to complete the process everywhere. This epoch of re-ionisation marked the last major change to gas in the universe, and it remains ionised today, over 12 billion years later.

However, astronomers aren't in agreement on which type of galaxies played the most important role in this process. Most have focused on large galaxies. The new study by researchers at the Georgia Institute of Technology and the San Diego Supercomputer Center indicates scientists should also focus on the smallest ones.

The researchers used computer simulations to demonstrate the faintest and smallest galaxies in the early universe were essential. These tiny galaxies – despite being 1000 times smaller in mass and 30 times smaller in size than our own Milky Way galaxy – contributed nearly 30 percent of the UV light during this process.

Other studies often ignore these small 'dwarf' galaxies as they weren't thought to form stars, because the UV light from nearby larger galaxies was too strong and suppressed these tiny neighbours.

wise RP zoom smallA zoomed-in view of the most massive dwarf galaxy in the simulation, seen when the universe was only 700 million years old. This galaxy only has 3 million solar masses of stars, compared to 60 billion solar masses in our Milky Way. The yellow points represent the older and cooler stars in the galaxy, and the blue points show the young and massive stars forming just before this snapshot of the simulation. The haze around the stars show the gas distribution in the galaxy with blue and red representing hot and cold temperatures, respectively. Credit: John Wise. Click for a larger version."It turns out these dwarf galaxies did form stars, usually in one burst, around 500 million years after the Big Bang," said Prof. John Wise, of the Georgia Institute of Technology, who led the study. "The galaxies were small, but so plentiful that they contributed a significant fraction of UV light in the re-ionisation process."

The team's simulations modelled the flow of UV stellar light through the gas within galaxies as they formed. They found that the fraction of ionizing photons escaping into intergalactic space was 50 percent in small galaxies (more than 10 million solar masses). It was only 5 percent in larger galaxies (300 million solar masses). This elevated fraction, combined with their high abundance, is exactly the reason why the faintest galaxies play an integral role during re-ionisation.

"It's very hard for UV light to escape galaxies because of the dense gas that fills them," said Wise. "In small galaxies, there's less gas between stars, making it easier for UV light to escape because it isn't absorbed as quickly. Plus, supernova explosions can open up channels more easily in these tiny galaxies in which UV light can escape."

The team's simulation results provide a gradual timeline that tracks the progress of re-ionisation over hundreds of millions of years. About 300 million years after the Big Bang, the universe was 20 per cent ionised. It was 50 per cent at 550 million years. The simulated universe was fully ionised at 860 million years after its creation.

"That such small galaxies could contribute so much to re-ionisation is a real surprise," said Prof. Michael Norman, of the University of California San Diego and one of the co-authors of the paper. "Once again, the supercomputer is teaching us something new and unexpected; something that will need to be factored into future studies of re-ionisation."

The research team expects to learn more about these faint galaxies when the next generation of telescopes is operational. For example, NASA's James Webb Space Telescope, scheduled to launch in 2018, will be able to see them.

A rendering of a simulation that follows the formation of the first galaxies in the universe. The field of view is adjusted to account for the expansion of the universe, where the scale bar represents 32,600 light-years (10,000 parsecs). The video shows hot and ionised gas in blue, and cold and neutral gas in red. The intensity of each pixel is set by the gas density, and the stars are not shown in this visualisation. The video runs from 200 million to 800 million years after the Big Bang. Credit: John Wise, Matthew Turk, Michael Norman, Tom Abel, Britton Smith

 

Media contacts

Jason Maderer
Media Relations
Georgia Institute of Technology
This email address is being protected from spambots. You need JavaScript enabled to view it.
+1 404 385 2966

Dr Keith Smith
Royal Astronomical Society
+44 (0)20 7734 4582
This email address is being protected from spambots. You need JavaScript enabled to view it.

 

Science contact

Prof. John Wise
Georgia Institute of Technology
Please contact Jason Maderer (details above) in the first instance.

 

Images, videos and captions

https://www.ras.org.uk/images/stories/press/wise_PR.jpg
A view of the entire simulation volume showing the large scale structure of the gas, which is distributed in filaments and clumps. The red regions are heated by UV light coming from the galaxies, highlighted in white. These galaxies are over 1000 times less massive than the Milky Way and contributed nearly one-third of the UV light during re-ionisation. The field of view of this image is 400,000 light years across, when the universe was only 700 million years old.
Credit: John Wise

https://www.ras.org.uk/images/stories/press/wise_RP_zoom.jpg
A zoomed-in view of the most massive dwarf galaxy in the simulation, seen when the universe was only 700 million years old. This galaxy only has 3 million solar masses of stars, compared to 60 billion solar masses in our Milky Way. The yellow points represent the older and cooler stars in the galaxy, and the blue points show the young and massive stars forming just before this snapshot of the simulation. The haze around the stars show the gas distribution in the galaxy with blue and red representing hot and cold temperatures, respectively.
Credit: John Wise

https://www.youtube.com/watch?v=YNQphDLn0Rc
Re-ionising the universe with dwarf galaxies
A rendering of a simulation that follows the formation of the first galaxies in the universe. The field of view is adjusted to account for the expansion of the universe, where the scale bar represents 32,600 light-years (10,000 parsecs). The video shows hot and ionised gas in blue, and cold and neutral gas in red. The intensity of each pixel is set by the gas density, and the stars are not shown in this visualisation. The video runs from 200 million to 800 million years after the Big Bang.
Credit: John Wise, Matthew Turk, Michael Norman, Tom Abel, Britton Smith

https://www.youtube.com/watch?v=0F_5XXU6nH0
A simulated dwarf galaxy 800 million years after the big bang
This is a rotation around a dwarf galaxy with a total mass of 10 billion solar masses (about 1000 times smaller than our Milky Way) when the universe was only 800 million years old. The galaxy is viewed from 25,000 light years away. The brightness of the gas indicates its density, and blue and red correspond to warm and cool gas temperatures respectively. The stars are coloured by their ages with older stars in yellow and newer stars shown in blue/white.
Credit: John Wise, Matthew Turk, Michael Norman, Tom Abel

 

https://www.youtube.com/watch?v=kifF3RYcfn0
https://www.youtube.com/watch?v=tNKFVkI0kjQ (3D glasses required)
This volume rendering shows the gradual re-ionisation of a typical patch of the universe. The blue regions show the heated and ionized regions around galaxies. These grow as the galaxies grow, eventually merging together to completely ionize the universe. The field of view of the cube is about 200 million light-years, and the calculation shows the first billion years of the universe.
Simulation credit: Marcelo Alvarez (CITA), Tom Abel (Stanford)
Visualization credit: Marcelo Alvarez, Ralf Kaehler (Stanford), Tom Abel

 

Further information

This research has been published in Wise J. el al., "The Birth of a Galaxy - III. Propelling reionisation with the faintest galaxies", Monthly Notices of the Royal Astronomical Society, in press, published by Oxford University Press. A preprint of the paper is available.

This research was supported by the National Science Foundation (NSF) (AST 1211626, AST 1333360 and AST 1109243). Any conclusions expressed are those of the principal investigator and may not necessarily represent the official views of the NSF.

 

Notes for editors

The Royal Astronomical Society (RAS), founded in 1820, encourages and promotes the study of astronomy, solar-system science, geophysics and closely related branches of science. The RAS organises scientific meetings, publishes international research and review journals, recognizes outstanding achievements by the award of medals and prizes, maintains an extensive library, supports education through grants and outreach activities and represents UK astronomy nationally and internationally. Its more than 3800 members (Fellows), a third based overseas, include scientific researchers in universities, observatories and laboratories as well as historians of astronomy and others. Follow the RAS on Twitter.