YOU ARE HERE: Home > News & Press > News and Press > News 2014 > Curious signal hints at dark matter – first evidence of axions?

I want information on:

Information for:

NEWS & PRESS

Curious signal hints at dark matter – first evidence of axions?

Last Updated on Thursday, 23 October 2014 13:40
Published on Thursday, 16 October 2014 10:59

Space scientists at the University of Leicester have detected a curious signal in the X-ray sky – one that provides a tantalising insight into the nature of mysterious 'dark matter'.

The Leicester team has found what appears to be a signature of 'axions', predicted dark matter particle candidates, something that has been a puzzle to science for years.

In a study being published on 20 October in the journal Monthly Notices of the Royal Astronomical Society, the University of Leicester scientists describe their finding of a signal which has no conventional explanation.

A diagram illustrating the layout of the observationsA sketch (not to scale) showing axions (blue) streaming out from the Sun, converting in the Earth's magnetic field (red) into X-rays (orange), which are then detected by the XMM-Newton observatory. Credit: University of Leicester. Click to enlarge.As first author Professor George Fraser, who sadly died in March of this year, wrote: "The direct detection of dark matter has preoccupied physics for over thirty years." Dark matter, a kind of invisible mass of unknown origin, cannot be seen directly with telescopes, but is instead inferred from its gravitational effects on ordinary matter and on light. Dark matter is believed to make up 85% of the matter of the Universe.

"The X-ray background – the sky, after the bright X-ray sources are removed – appears to be unchanged whenever you look at it," explained Dr Andy Read, also from the University of Leicester Department of Physics and Astronomy and now leading the paper. "However, we have discovered a seasonal signal in this X-ray background, which has no conventional explanation, but is consistent with the discovery of axions."

This result was found through an extensive study of almost the entire archive of data from the European Space Agency's X-ray observatory, XMM-Newton, which will celebrate its 15th year in orbit this December. Previous searches for axions, notably at CERN, and with other spacecraft in Earth orbit, have so far proved unsuccessful.

Prof. George FraserProfessor George Fraser (1955-2014), late Director of the University of Leicester Space Research Centre. Credit: University of Leicester. Click to enlarge.As Professor Fraser explains in the paper: "It appears plausible that axions – dark matter particle candidates – are indeed produced in the core of the Sun and do indeed convert to X-rays in the magnetic field of the Earth". It is predicted that the X-ray signal due to axions will be greatest when looking through the sunward side of the magnetic field because this is where the field is strongest.

Dr Read concludes: "These exciting discoveries, in George's final paper, could be truly ground breaking, potentially opening a window to new physics, and could have huge implications, not only for our understanding of the true X-ray sky, but also for identifying the dark matter that dominates the mass content of the cosmos."

President of the Royal Astronomical Society Professor Martin Barstow, who is also Pro-Vice-Chancellor, Head of the College of Science & Engineering and Professor of Astrophysics & Space Science at the University of Leicester said: "This is an amazing result. If confirmed, it will be the first direct detection and identification of the elusive dark matter particles and will have a fundamental impact on our theories of the Universe."

 

Further information

The new work appears in G. W. Fraser et al., "Potential solar axion signatures in X-ray observations with the XMM-Newton observatory", Monthly Notices of the Royal Astronomical Society, vol. 445, pp. 2146-2168, 2014, published by Oxford University Press. A preprint of the paper is available on the arXiv.

The XMM-Newton observatory, its operations and data archive, constitute a major international collaboration within the European Space Agency (ESA) member states and beyond. The work of a number of authors on the calibration of XMM-Newton was supported by the UK Space Agency (UKSA).

Prof. George Fraser was awarded the RAS Jackson-Gwilt medal in 2014, for his work on X-ray instrumentation.

 

Media contacts

Peter Thorley
Corporate News Officer
News Centre, University of Leicester,
Tel: +44 (0)116 252 2415
This email address is being protected from spambots. You need JavaScript enabled to view it.
Twitter: @UoLNewsCentre
http://www2.le.ac.uk/offices/press

Dr Robert Massey
Royal Astronomical Society
Tel: +44 (0)20 7734 3307 x214
Mob: +44 (0)794 124 8035
This email address is being protected from spambots. You need JavaScript enabled to view it.

 

Science contacts

Dr Andy Read
University of Leicester
Tel: +44(0)116 252 5650
Mob: +44 (0)7747 038199
This email address is being protected from spambots. You need JavaScript enabled to view it.

Dr Steve Sembay
University of Leicester
This email address is being protected from spambots. You need JavaScript enabled to view it.

 

Images and captions

Images are available for download:

https://www.ras.org.uk/images/stories/press/George%20Fraser.jpg
Caption: Professor George Fraser (1955-2014), late Director of the University of Leicester Space Research Centre. Credit: University of Leicester

https://www.ras.org.uk/images/stories/press/Axion_PR.png
Caption: A sketch (not to scale) showing axions (blue) streaming out from the Sun, converting in the Earth's magnetic field (red) into X-rays (orange), which are then detected by the XMM-Newton observatory. Credit: University of Leicester

 

Notes for editors

The Royal Astronomical Society (RAS, www.ras.org.uk), founded in 1820, encourages and promotes the study of astronomy, solar-system science, geophysics and closely related branches of science. The RAS organizes scientific meetings, publishes international research and review journals, recognizes outstanding achievements by the award of medals and prizes, maintains an extensive library, supports education through grants and outreach activities and represents UK astronomy nationally and internationally. Its more than 3800 members (Fellows), a third based overseas, include scientific researchers in universities, observatories and laboratories as well as historians of astronomy and others.

Follow the RAS on Twitter via @RoyalAstroSoc