YOU ARE HERE: Home > News & Press > News archive > News 2008 > RAS PN 08/51: "Cosmic Eye" sheds light on early galaxy formation

I want information on:

Information for:

NEWS ARCHIVE

RAS PN 08/51: "Cosmic Eye" sheds light on early galaxy formation

Last Updated on Tuesday, 06 April 2010 15:12
Published on Wednesday, 08 October 2008 18:00
An international team of scientists, including RAS Norman Lockyer Fellow Dr Mark Swinbank, have used a gravitational lens to take a close look at a galaxy in the very early Universe.


ROYAL ASTRONOMICAL SOCIETY PRESS INFORMATION NOTE
Date: 7th October 2008
EMBARGOED UNTIL 1800 BST (LONDON TIME) / 1300 US EASTERN TIME, WEDNESDAY, 8TH OCTOBER 2008

Ref.: PN 08/51
Forwarded by:
Dr Robert Massey
Press and Policy Officer
Royal Astronomical Society
Burlington House
Piccadilly
London W1J 0BQ
Tel: +44 (0)794 124 8035, +44 (0)20 7734 4582
E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
Web: www.ras.org.uk

RAS PN 08/51 (EMBARGOED): “COSMIC EYE” SHEDS LIGHT ON EARLY GALAXY FORMATION

(Adapted from a release from the University of Durham press office)

A Cosmic Eye has given scientists a unique insight into galaxy formation in the very early Universe.

Using gravity from a foreground galaxy as a zoom lens the team was able to see a young star-forming galaxy in the distant Universe as it appeared only two billion years after the Big Bang.

Scientists at Durham University (including Royal Astronomical Society Norman Lockyer Fellow Dr Mark Swinbank), Cardiff University and the California Institute of Technology (Caltech, USA), are behind the research, partly funded by the Royal Astronomical Society and published today (Thursday 9th October) in the prestigious scientific journal Nature.

The researchers, led by Dr Dan Stark, of Caltech, say their findings show for the first time how the distant galaxy might evolve to become a present-day system like our Milky Way.

And they say their study also provides a taste of what astronomers will be able to see in the distant Universe once projects such as the planned European Extremely Large Telescope (E -ELT) and the American Thirty Metre Telescope (TMT) come into use.

The Cosmic Eye is so called because the foreground galaxy, which is 2.2 billion light years from Earth, appears in the centre of an arc created by the distant galaxy – giving it the appearance of a human eye.

The distant galaxy, which lies 11 billion light years from Earth, was originally identified using the Hubble Space Telescope.

The team then used the ten metre Keck telescope, on Hawaii, which is equipped with laser -assisted guide star adaptive optics (AO) to correct for blurring in the Earth’s atmosphere, to carry out their observations.

By coupling the telescope with the magnifying effect of the gravitational field of the foreground galaxy – a technique called gravitational lensing - they were able to study the distant star system.

Gravitational lensing, the distortion of light rays by massive objects as predicted by Einstein, enlarged the distant galaxy by eight times.

This allowed the scientists to determine the galaxy’s internal velocity structure and compare it to later star systems such as the Milky Way.

Dr Swinbank, of The Institute for Computational Cosmology, at Durham University, said: “This is the most detailed study there has been of an early galaxy. Effectively we are looking back in time to when the Universe was in its very early stages.

“This technique of using gravitational lensing provides us with a glimpse of what we will commonly achieve when the next generation of telescopes, which are still a decade away, come on-line.”

Dr Dan Stark, of Caltech, said: “Gravity has effectively provided us with an additional zoom lens, enabling us to study this distant galaxy on scales approaching only a few hundred light years.

“This is ten times finer sampling than previously. As a result for the first time we can see that a typical-sized young galaxy is spinning and slowly evolving into a spiral galaxy much like our own Milky Way.”

Data from the Keck Observatory was combined with millimetre observations from the Plateau de Bure Interferometer, in the French Alps, which is sensitive to the distribution of cold gas destined to collapse to form stars.

Dr Swinbank added: “Remarkably the cold gas traced by our millimetre observations shares the rotation shown by the young stars in the Keck observations.

“The distribution of gas seen with our amazing resolution indicates we are witnessing the gradual build up of a spiral disk with a central nuclear component.”

The research was funded by a variety of bodies including the RAS, the Science and Technology Facilities Council (STFC), the Royal Society, the National Science Foundation (NSF) and the Keck Foundation.

Data for the research was obtained at the WM Keck Observatory, which is operated as a scientific partnership between Caltech and NASA and from observations made with European Organisation for Astronomical Research in the Southern Hemisphere (ESO) Telescopes at the Paranal Observatory.

The scientists say the research demonstrates how important angular resolution - the angular size of the smallest detail of an astronomical object that can be distinguished with a telescope - has become in ensuring progress in extragalactic astronomy.

Projects such as the E-ELT, TMT and the Atacama Large Millimeter/submillimeter Array (ALMA), a large interferometer being completed in Chile, will aid this work.

CONTACT INFORMATION

Interviews:

Dr Mark Swinbank, RAS Norman Lockyer Fellow in the Institute for Computational Cosmology, Department of Physics, at Durham University, is available for interview between 9am and 5pm (BST), Tuesday 7th October, to Friday 10th October, on +44 (0) 191 334 3786; mobile +44 (0)774871745 or e-mail This email address is being protected from spambots. You need JavaScript enabled to view it.

OR

Dr Dan Stark, of Caltech, USA, (now STFC Fellow at the University of Cambridge) is available on Tuesday 7th October, 2pm to 5pm (BST) and between 9am and 5pm (BST), Wednesday 8th October to Friday 10th October, on +44 (0)1223 339282, mobile +44 (0)7794 906933 or e-mail This email address is being protected from spambots. You need JavaScript enabled to view it.

OR

Professor Richard Ellis, of Caltech, USA, is available between 8am to 10pm PDT (4pm to 6am BST), Tuesday 7th October to Friday 10th October, on +1-626-395-2598; mobile +1-626-676-5530 or e-mail This email address is being protected from spambots. You need JavaScript enabled to view it.

IMAGES

The following images are downloadable from this web link: http://astro.dur.ac.uk/~ams/CosmicEye/

The Cosmic Eye, showing the foreground galaxy in yellow at the centre of the image surrounded by the blue arc of the distant galaxy.

A colour schematic of the spinning distant galaxy after correcting for lens distortion. The blue area shows the galaxy moving towards the viewer with the red area furthest away. The green area is the centre of the galaxy.

M-peg clip showing the emergence of the distant galaxy as seen through the Keck observations.

Images also available from the Durham University Media Relations Office on +44 (0)191 334 6075 or e-mail This email address is being protected from spambots. You need JavaScript enabled to view it.

SOURCE INFORMATION

The formation and assembly of a typical star-forming galaxy at redshift z=3, Stark, Daniel, Swinbank, A.Mark et al, Nature, 09 October 2008, vol 455, issue 7214, pp775-777.

A copy of the paper is available from the Durham University Media Relations Office on the contact details above.

WEBLINKS

Institute of Computational Cosmology: http://www.icc.dur.ac.uk/
Durham University: http://www.dur.ac.uk/
Caltech: http://www.caltech.edu/
Science & Technology Facilities Council: http://www.scitech.ac.uk/
Royal Astronomical Society: http://www.ras.org.uk/
The Royal Society: http://royalsociety.org/ 

End of Media Release – originally issued by Durham University Media Relations Office, tel: +44 (0)191 334 6075, e-mail This email address is being protected from spambots. You need JavaScript enabled to view it.

The Royal Astronomical Society (RAS), founded in 1820, encourages and promotes the study of astronomy, solar-system science, geophysics and closely related branches of science. The RAS organizes scientific meetings, publishes international research and review journals, recognizes outstanding achievements by the award of medals and prizes, maintains an extensive library, supports education through grants and outreach activities and represents UK astronomy nationally and internationally. Its more than 3000 members (Fellows), a third based overseas, include scientific researchers in universities, observatories and laboratories as well as historians of astronomy and others.