YOU ARE HERE: Home > News & Press > News archive > News 2016 > Astronomers in South Africa discover mysterious alignment of black holes

I want information on:

Information for:


Astronomers in South Africa discover mysterious alignment of black holes

Last Updated on Tuesday, 12 April 2016 19:43
Published on Monday, 11 April 2016 14:51

Deep radio imaging by researchers in the University of Cape Town and University of the Western Cape, in South Africa, has revealed that supermassive black holes in a region of the distant universe are all spinning out radio jets in the same direction – most likely a result of primordial mass fluctuations in the early universe. The astronomers publish their results in a new paper in Monthly Notices of the Royal Astronomical Society.

Galaxies Alignments Images smallAn image of the deep radio map covering the ELAIS-N1 region, with aligned galaxy jets. The image on the left has white circles around the aligned galaxies; the image on the right is without the circles. Credit: Prof Russ Taylor.Click for a larger imageThe new result is the discovery – for the first time – of an alignment of the jets of galaxies over a large volume of space, a finding made possible by a three-year deep radio imaging survey of the radio waves coming from a region called ELAIS-N1 using the Giant Metrewave Radio Telescope (GMRT) in India.

The jets are produced by the supermassive black holes at the centres of these galaxies, and the only way for this alignment to exist is if supermassive black holes are all spinning in the same direction, says Prof Andrew Russ Taylor, joint UWC/UCT SKA Chair, Director of the recently-launched Inter-University Institute for Data Intensive Astronomy, and principal author of the Monthly Notices study.

"Since these black holes don’t know about each other, or have any way of exchanging information or influencing each other directly over such vast scales, this spin alignment must have occurred during the formation of the galaxies in the early universe," he notes.

This implies that there is a coherent spin in the structure of this volume of space that was formed from the primordial mass fluctuations that seeded the creation of the large-scale structure of the universe.

With study co-author – and UCT PhD student currently working at the National Radio Astronomy Observatory, Socorro, New Mexico, USA – Preshanth Jagannathan, the team discovered the alignment after the initial image had been made. Within the large-scale structure, there were regions where the spin axes of galaxies lined up.

The finding wasn’t planned for: the initial investigation was to explore the faintest radio sources in the universe, using the best available telescopes – a first view into the kind of universe that will be revealed by the South African MeerKAT radio telescope and the Square Kilometre Array (SKA), the world’s most powerful radio telescope and one of the biggest scientific instruments ever devised.

Earlier observational studies had previously detected deviations from uniformity (so-called isotropy) in the orientations of galaxies. But these sensitive radio images offer a first opportunity to use jets to reveal alignments of galaxies on physical scales of up to 100 Mpc. And measurements from the total intensity radio emission of galaxy jets have the advantage of not being affected by effects such as scattering, extinction and Faraday Rotation, which may be an issue for other studies.

The presence of alignments and certain preferred orientations can shed light on the orientation and evolution of the galaxies, in relation to large-scale structures, and the motions in the primordial matter fluctuations that gave rise to the structure of the Universe.

So what could these large-scale environmental influences during galaxy formation or evolution have been? There are several options: cosmic magnetic fields; fields associated with exotic particles (axions); and cosmic strings are only some of the possible candidates that could create an alignment in galaxies even on scales larger than galaxy clusters.

The authors go on to note it would be interesting to compare this with predictions of angular momentum structure from universe simulations.

UWC Prof Romeel Dave, SARChI Chair in Cosmology with Multi-Wavelength Data, who leads a team developing plans for universe simulations that could explore the growth of large-scale structure from a theoretical perspective, agrees: “This is not obviously expected based on our current understanding of cosmology. It’s a bizarre finding.”

It’s a mystery, and it’s going to take a while for technology and theory alike to catch up.

Such projects are already in the planning stages; the SKA for example, and its precursor telescopes, the South African MeerKAT array and the Australian SKA Pathfinder (ASKAP).

"GMRT is one of the largest and most sensitive radio telescope arrays in the world," notes Prof Taylor, "but we really need MeerKAT to make the very sensitive maps, over a very large area and with great detail, that will be necessary to differentiate between possible explanations. It opens up a whole new research area for these instruments, which will probe as deeply into the and as far back as we can go – it’s going to be an exciting time to be an astronomer."

A large-scale spin distribution has never been predicted by theories – and an unknown phenomenon like this presents a challenge that theories about the origins of the universe need to account for, and an opportunity to find out more about the way the cosmos works.

"We’re beginning to understand how the large-scale structure of the universe came about, starting from the Big Bang and growing as a result of disturbances in the early universe, to what we have today," says Prof Taylor, "and that helps us explore what the universe of tomorrow will be like."

Media contacts


Aidan van Den Heever
University of the Western Cape
Tel: +27 (0)21 959 9566
Mob: +27 (0)72 332 2055
This email address is being protected from spambots. You need JavaScript enabled to view it.

Patricia Lucas
University of Cape Town
South Africa
Tel: +27 (0)21 650 5428
Mob: +27 (0)76 292 8047
This email address is being protected from spambots. You need JavaScript enabled to view it.


Science contacts


Prof Andrew Russ Taylor
Department of Astronomy
University of Cape Town
South Africa
This email address is being protected from spambots. You need JavaScript enabled to view it.

Presanth Jagannathan
National Radio Astronomy Observatory
Socorro, New Mexico
United States
This email address is being protected from spambots. You need JavaScript enabled to view it.


Further information

The new work appears in “Alignments of Radio Galaxies in Deep Radio Imaging of ELAIS N1”, A. R. Taylor, P. Jagannathan, Monthly Notices of the Royal Astronomical Society, Oxford University Press.


Notes for editors

The study authors thank the staff of the GMRT – run by the National Centre for Radio Astrophysics of the Tata Institute of Fundamental Research in Pune, India – that made their observations possible. They also thank the US National Radio Astronomy Observatory for providing support in the form of the Reber Doctoral Fellowship.

Radio astronomy is the study of astronomical objects and occurrences at radio frequencies – sources include stars, galaxies, radio galaxies, pulsars and others.  Deep radio imaging constructs images of deep space based on these radio observations.

The Giant Metrewave Radio Telescope is an array of radio telescopes at metre wavelengths. It is operated by the National Centre for Radio Astrophysics, part of the Tata Institute of Fundamental Research, Pune, India. The world’s largest interferometric array at the time of its building in 1995, it is a very versatile instrument for investigating a range of radio astrophysical problems.

The Square Kilometre Array will collect and process vast amounts of radioastronomical data, and will stimulate cutting-edge advances in high-performance computing. Producing the thousands of dishes required for the SKA within the project’s time scales will also demand an entirely new way of building highly sophisticated and sensitive scientific instruments – which should lead to new innovations in manufacturing and construction. South Africa’s MeerKAT telescope is an SKA precursor – a “pathfinder” telescope. It consists of 64 dish-shaped antennas, and is temporarily the most powerful radio telescope in the southern hemisphere. MeerKAT (and Australia’s SKA Pathfinder, ASKAP) form part of SKA Phase 1.

Several large-scale environmental influences could have influenced spatial alignment during galaxy formation or evolution. Cosmic magnetic fields arise as a result of huge densities, volumes or motions of electrically charged material, such as the gas that pervades the Milky Way or the outflows of material from the energetic centres of galaxies. Axionic fields are the fields associated with hypothetical elementary particles that are of interest as a possible component of cold dark matter. And cosmic strings are hypothetical 1-dimensional topological defects that may have formed during a symmetry breaking phase transition during the earliest moments of the universe's evolution, just after cosmological inflation.

The Inter-University Institute for Data-Intensive Astronomy, launched in September 2015 and headed by Prof Russ Taylor, is a multi-university partnership – including UWC and UCT – that will develop crucial capacity for big data management and analysis, a spin-off of the Square Kilometre Array project.

The Royal Astronomical Society (RAS), founded in 1820, encourages and promotes the study of astronomy, solar-system science, geophysics and closely related branches of science. The RAS organizes scientific meetings, publishes international research and review journals, recognizes outstanding achievements by the award of medals and prizes, maintains an extensive library, supports education through grants and outreach activities and represents UK astronomy nationally and internationally. Its more than 3900 members (Fellows), a third based overseas, include scientific researchers in universities, observatories and laboratories as well as historians of astronomy and others.

The RAS accepts papers for its journals based on the principle of peer review, in which fellow experts on the editorial boards accept the paper as worth considering.  The Society issues press releases based on a similar principle, but the organisations and scientists concerned have overall responsibility for their content.

Follow the RAS on Twitter